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Abstract
Learning the representation of categorical data with
hierarchical value coupling relationships is very
challenging but critical for the effective analysis
and learning of such data. This paper proposes a
novel coupled unsupervised categorical data repre-
sentation (CURE) framework and its instantiation,
i.e., a coupled data embedding (CDE) method, for
representing categorical data by hierarchical value-
to-value cluster coupling learning. Unlike exist-
ing embedding- and similarity-based representation
methods which can capture only a part or none of
these complex couplings, CDE explicitly incorpo-
rates the hierarchical couplings into its embedding
representation. CDE first learns two complemen-
tary feature value couplings which are then used to
cluster values with different granularities. It fur-
ther models the couplings in value clusters within
the same granularity and with different granulari-
ties to embed feature values into a new numerical
space with independent dimensions. Substantial
experiments show that CDE significantly outper-
forms three popular unsupervised embedding meth-
ods and three state-of-the-art similarity-based rep-
resentation methods.

1 Introduction
Categorical data with finite unordered feature values is ubiq-
uitous in real-world applications and has received increasing
attention for representation and learning [Wang et al., 2015;
Zhang et al., 2015]. Unlike numerical data, categorical
data cannot be directly manipulated per algebraic operations;
hence many popular numerical learning algorithms are not
directly applicable. Accordingly, it is important to learn an
expressive numerical representation of categorical data.

In general, a good representation should effectively cap-
ture the intrinsic data characteristics [Bengio et al., 2013].
One key characteristic in complex categorical data is the fol-
lowing hierarchical couplings (i.e., dependency or correla-
tion) embedded in feature values. (1) On the low level, there
exist strong couplings [Cao, 2015] between feature values,
demonstrating the natural clusters of values. Taking census
data as an example, it may be visible that the value PhD of

feature Education is highly coupled with the values Scientist
and Professor of feature Occupation; and these values form
a semantic value cluster that characterizes one type of strong
relation between education and occupation. In addition, dif-
ferent value clusters exist on different granularities and with
different semantics [Foss and Zaı̈ane, 2002]; e.g., all values
belong to one super cluster at the coarsest granularity while
each value is a cluster at the finest granularity. (2) On the
high level, the clusters of feature values are further coupled
with each other. Couplings exist between clusters of the same
granularity and between clusters of different granularities.

For the above hierarchical value couplings in categorical
data, existing embedding and similarity-based representation
methods can capture only a part or none of these feature value
couplings. Typical embedding-based representation meth-
ods transform categorical data to numerical data by encoding
schemes, e.g., 0-1 encoding and Inverse Document Frequency
(IDF) encoding [Aizawa, 2003; Pang et al., 2016c]. These
methods are easy to implement, but do not consider the cou-
plings between feature values since they usually treat features
independently. Some recent similarity-based representation
methods, e.g., in [Ahmad and Dey, 2007; Ienco et al., 2012;
Wang et al., 2015; Jia et al., 2016] incorporate feature re-
lations into similarity or kernel matrices. However, they do
not capture the value clusters or the couplings between value
clusters, leading to insufficient representation power in han-
dling data with such hierarchical value couplings.

The hierarchical value couplings reflect the intrinsic data
characteristics and complexities, which need to be captured
in data representation. However, this is not a trivial task and,
to our best knowledge, no work reported properly handles
them. Accordingly, this paper aims to explicitly learn these
couplings in terms of a new embedding-based representation.
The main idea and contributions are as follows.

• A Coupled Unsupervised categorical data REpresenta-
tion (CURE) framework is proposed, which has a hier-
archical learning structure. CURE is data-driven, which
first learns the value clusters with different granularities
by involving different low-level feature value couplings.
It further generates an object embedding based on the
concatenation of value embedding obtained by modeling
couplings among the learned value clusters. In this way,
CURE captures the intrinsic data characteristics and en-
ables an effective numerical representation for categori-



cal data with sophisticated couplings.

• The CURE framework is further instantiated into a Cou-
pled Data Embedding (CDE) method to capture two
types of value couplings. CDE captures complementary
feature value couplings and produces diverse sets of in-
formative value clusters. It further models the affluent
couplings among these value clusters to embed categor-
ical data into a new space with independent dimensions
and rich semantics. As a result, CDE enables algebraic
operations of categorical data in the Euclidean space.

Substantial experiments show that (1) CDE significantly out-
performs three popular embedding methods and three state-
of-the-art coupled similarity measures in terms of F-score for
clustering on 10 real-world data sets with different value cou-
pling complexities; (2) CDE performs stably and is insensi-
tive to its parameters.

2 Related Work
This section discusses three closely related work, including
embedding-based representation, similarity-based represen-
tation and coupling learning.

Embedding-based Representation. Embedding-based
representation constructs a numerical vector for each categor-
ical object. Encoding methods are commonly used for cate-
gorical data representation [Cohen et al., 2013]. One popular
method is the 0-1 encoding which encodes each feature value
with a 0-1 indicator vector [Pang et al., 2016c]. Although 0-1
coding is reversible with the original data, it assumes that the
distance among all values equal 1 which is often violated in
real-world data. To alleviate the curse of dimensionality is-
sue, dimension reduction methods, like principal component
analysis (PCA) [Jolliffe, 2002], are often conducted on a 0-1
encoding matrix. Another well-known method is IDF encod-
ing [Aizawa, 2003] which differentiates the values from the
same feature according to value frequency; however, it cannot
capture the couplings between values from different features.

Several effective embedding methods are available for tex-
tual data, such as latent semantic indexing (LSI) [Deerwester
et al., 1990], latent Dirichlet allocation (LDA) [Blei et al.,
2003], skip-gram [Mikolov et al., 2013a] and their variants
[Hofmann, 1999; Wilson and Chew, 2010; Mikolov et al.,
2013b]. However, categorical data has an explicit feature
structure, which is very different from unstructured textual
data. Hence, these methods do not fit our target problem.

Similarity-based Representation. Similarity-based rep-
resentation approaches (including some kernel methods) rep-
resent categorical data with an object similarity matrix. Vari-
ous similarity measures have been designed to capture value
couplings in data: ALGO [Ahmad and Dey, 2007] first use
conditional probability of two feature values to describe the
value couplings; DILCA [Ienco et al., 2012] and DM [Jia et
al., 2016] incorporate feature selection and feature weighting
into capturing feature couplings respectively; COS [Wang et
al., 2015] takes inter- and intra-feature couplings into con-
sideration. Although these similarity measures capture the
pairwise value couplings, they do not consider the value clus-
ters and the couplings between value clusters. Meanwhile,
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Figure 1: The CURE Framework. The embedding of an object is the
concatenation of the embedded vectors of its values.

similarity measurement is not an efficient method of repre-
sentation since it must calculate and store an object similarity
matrix which may limit its applications.

In addition, there are some embedding methods, e.g., in
[Cox and Cox, 2000; Hinton and Roweis, 2002] which opti-
mize the embedding representation on the similarity matrix,
but their results heavily rely on the underlying similarity mea-
sures. Some other similar embedding methods, e.g. in [Zhang
et al., 2015] require class labels to learn distance, and thus
they are inapplicable for unsupervised tasks.

Coupling Learning. Coupling learning is a methodology
that learns value-to-object coupling relationships to leverage
feature and object couplings to empower different models,
which has shown valuable and been successfully applied to
various problems, e.g., behavior analysis [Cao et al., 2012;
Cao, 2014], similarity learning [Wang et al., 2015] and outlier
detection [Pang et al., 2016b; 2016a]. This work extends this
methodology by capturing hierarchical value to value cluster
couplings in categorical data representation.

3 Embedding with Hierarchical Value to
Value Cluster Couplings

The proposed CURE framework learns an embedding-based
representation for each feature value by modeling hierarchi-
cal value to value cluster couplings. As shown in Figure 1,
CURE first constructs multiple value-value influence matri-
ces {M1, · · · ,Mn} with different value coupling functions
{φ1, · · · , φn}. These value influence matrices reflect the low-
level data characteristics. CURE then learns the value clusters
with different granularities based on value influence matrices,
resulting in a set of value-cluster matrices {C1, · · · ,Cn}.
These value clusters convey rich semantics and have cou-
plings with each other. CURE further learns the couplings
between value clusters and generates a |V |×r value represen-
tation matrix N, where r is the dimension in the embedding
space. After this, the object embedding matrix is generated
by the concatenation of value vectors.

We further instantiate the CURE framework into an em-
bedding method called CDE. In CDE, we construct two
value influence matrices to capture the complementary fea-
ture value couplings; the complementarity is theoretically



proved. CDE learns the value clusters with different granular-
ities by multiple k-means clustering with different parameter
values k. By conducting PCA on value clusters, CDE learns
the linear correlations between value clusters and obtains the
final numerical representation of an original data set.

3.1 Preliminaries
Let a data set D consist of a number of data objects O
that are described by a set of features F . D can be or-
ganized as an information table T = < O,F ,V >, where
O = {o1, ..., on} is composed of a non-empty finite set of
data objects, F = {f1, ..., fm} is a finite set of features and
V = ∪mj=1Vj consists of sets of values from all features, in
which Vj is the set of values of feature fj . The value sets
of each feature are distinct , i.e., Vi ∩ Vj = ∅,∀i 6= j. The
whole value set of T is V = {v1, v2, ..., vl}, where l is the
total number of values.

The value from feature f in object o is denoted by vfo and
the feature which the value vi belongs to is denoted by f i. We
assume that the probability p(v) of a value can be represented
by its frequency. The joint probability of two values vi and

vj is p(vi, vj) =
|{vf

i

o =vi∩vf
j

o =vj ,o∈O}|
n .

We use normalized mutual information [Estévez et al.,
2009] ψ to reflect the relation between two features, which
is defined as follows:

ψ(fa, fb) =

2
∑

vi∈Vfa

∑
vj∈Vfb

p(vi, vj)log
p(vi,vj)
p(vi)p(vj)

h(fa) + h(fb)
, (1)

where h(fa) = −
∑
vi∈Vfa

p(vi)log(p(vi)) is the marginal
entropy of feature fa.

3.2 Learning Complementary Value Couplings
We construct two value influence matrices to capture the
value couplings from occurrence and co-occurrence perspec-
tives whose complementarity is proved in Section 4.
Definition 1 (Occurrence-based Value Influence Matrix).
The occurrence-based value influence matrix Mo is defined
as follows:

Mo =

φo(v1, v1) . . . φo(v1, vl)
...

. . .
...

φo(vl, v1) . . . φo(vl, vl)

 , (2)

where the coupling function φo(vi, vj) = ψ(f i, f j) × p(vj)
p(vi)

indicates the occurrence influence on value vi from value vj .
The coupling function φo captures the difference between

the marginal probabilities of values within their own feature.
The mutual information which reflects the feature relation is
incorporated as weight on value couplings. .
Definition 2 (Co-occurrence-based Value Influence Matrix).
The co-occurrence-based value influence matrix Mc is de-
fined as follows:

Mc =

φc(v1, v1) . . . φc(v1, vl)
...

. . .
...

φc(vl, v1) . . . φc(vl, vl)

 , (3)

where the coupling function φc(vi, vj) =
p(vi,vj)
p(vi)

indicates
the co-occurrence influence on value vi from value vj .

The coupling function φc captures the difference between
two values by conditional probabilities across different fea-
tures. Accordingly, Mc is asymmetric which means the in-
fluence on vi from vj is different from the influence on vj
from vi. The φc value of two values from the same feature
always equals 0 since they never co-occur in the same object.

3.3 Clustering Values with Different Granularities
Based on the above matrices, we can learn the value clusters
with different granularities which represent different seman-
tics and well reflect the data characteristics. To learn the value
clusters with different granularities, here we conduct cluster-
ing on the value matrices with different cluster numbers.

We conduct k-means clustering on Mo with different k,
i.e., {k1, k2, ..., ko}, and on Mc with {k1, k2, ..., kc}. The
clustering results are represented by a cluster membership in-
dicator matrix, where the entry is one if a value is contained
in a value cluster and zero otherwise. So we obtain two in-
dicator matrices. We further concatenate these two indicator
matrices and obtain a l× (

∑o
i=1 ki+

∑c
j=1 kj) indicator ma-

trix I. The choice of k is discussed in Section 3.5.
k-means clustering is chosen for two major reasons as fol-

lows: (1) The value influence matrices are numerical and
the Euclidean distance fed in k-means clustering captures the
global relation between values. (2) k-means clustering is lin-
ear w.r.t. the size of the input matrix, which enables CDE to
efficiently learn value clusters with different size.

3.4 Embedding Values with Linear Couplings
between Value Clusters

The indicator matrix I conveys rich couplings between the
value clusters obtained using different granularities on two
value influence matrices. For simplicity and the considera-
tion of common scenarios, we assume that couplings between
value clusters are linear correlations, and apply PCA on the
indicator matrix to learn the linear correlations between value
clusters to obtain a vector embedding for each value. PCA is
chosen because (1) it reduces the data complexity with little
loss of information by converting a matrix with linearly cor-
related variables to a new matrix with linearly uncorrelated
components, and (2) it substantially reduces the dimensional-
ity of the value embedding, which enables us to represent an
object in a considerably lower-dimensional embedding space.

We first calculate the centralized matrix X of the indicator
matrix I by subtracting the mean of each column and further
derive a covariance matrix S from X. The value embedding
N is obtained by the following matrix decomposition:

N = XVT , (4)

where V is the principal component matrix derived from sin-
gular value decomposition results of S, i.e., S = UΣV.

After the transformation of PCA, the dimensions of value
embedding N are independent of each other so that the al-
gebraic operations in the Euclidean space can be used on the
embedded matrix.



Algorithm 1 Value Embedding (D, α, β)

Input: D - data set, α - proportion factor, β - dimension re-
ducing factor

Output: N - the numerical representation of all values
1: Generate Mo and Mc

2: Initialize I = ∅
3: for M ∈ {Mo,Mc} do
4: Initialize k = 2
5: rm = ∅
6: repeat
7: I = [I; kmeans(M, k)]
8: Remove the cluster with only one value and store

the remove cluster in rm
9: k+ = 1

10: until length(rm) ≥ d kαe
11: end for
12: X = I−mean(I)
13: Calculate the covariance matrix S of X
14: [U, Σ, V] = SVD (S)
15: N = XVT

16: Remove the columns whose maximum Euclidean dis-
tance of any two elements is less than β from N

17: return N

3.5 The CDE Method
Algorithm 1 presents the main procedures of CDE. The first
step is to generate the value influence matrices Mo and Mc

according to Definitions (1) and (2).
k is the clustering parameter which decides the granular-

ity of value clusters. Instead of giving a fixed value, we use
another proportion factor α to decide the maximum cluster
number as shown in Steps (3-11) of Algorithm 1. We remove
those tiny clusters with only one value from the indicator ma-
trix. When the number of removed clusters is larger than k

α ,
we stop increasing k, whose initial value is 2. The final indi-
cator matrix is the concatenation of all clustering results with
different k from Mo and Mc.

After conducting PCA on the indicator matrix to learn
the correlations between value clusters, we remove those
columns whose maximum pairwise Euclidean distance is less
than β from N. Finally, we calculate the object embedding
by concatenating embedding vectors of its values from N.

We can scan the original data set and generate Mo and Mc

with the complexity of O(nm2). Clustering on the value ma-
trix has complexity O(kmaxl), where kmax is the number of
times for clustering on one value matrix which is less than
value number l. PCA has O(l3). With the numerical repre-
sentation of values, generating the embedding matrix of ob-
jects has O(nm). Correspondingly, the time complexity of
CDE is O(nm2 + l3).

4 Theoretical Analysis of CDE
CDE obtains the value clusters by k-means clustering which
is based on the Euclidean distance matrices of Mo and Mc.
The distance matrix in k-means clustering decides the qual-
ity of value clusters. By proving the complementarity of the

two distance matrices, we can observe that the two value cou-
plings are complementary.

The occurrence distance between values vi and vj is de-
fined as follows:

do(vi, vj) =

√√√√ l∑
h=1

(φo(vi, vh)− φo(vj , vh))2, (5)

where φo(vi, vh) is the occurrence coupling function defined
in Definition 1 and l is the number of values.

The co-occurrence distance between values vi and vj is
defined below:

dc(vi, vj) =

√√√√ l∑
h=1

(φc(vi, vh)− φc(vj , vh))2, (6)

where φc(vi, vh) is the co-occurrence coupling function de-
fined in Definition 2. If any two distinct values can be distin-
guished by do or dc, then do and dc are complementary.

Theorem 1 (Distance Complementarity). For any two values
vi 6= vj , do(vi, vj) 6= 0 or dc(vi, vj) 6= 0.

Proof. To prove the above theorem, we prove that vi 6= vj
and do(vi, vj) = 0 satisfy dc(vi, vj) 6= 0 for all cases. If
dc(vi, vj) = 0, then ∀vh ∈ V, φc(vi, vh) = φc(vj , vh).
To prove dc(vi, vj) 6= 0, we only need to prove ∃vh ∈
V, φc(vi, vh) 6= φc(vj , vh). Then we prove the theorem by
considering the following cases.

(1) vi and vj belong to the same feature, which means
ψ(f i, fh) = ψ(f j , fh): then do(vi, vj) = 0 if and only
if p(vi) = p(vj). Let vh = vi, then φc(vi, vh) = 1
and φc(vj , vh) = 0 since vi, vj belong to the same feature.
Hence, dc(vi, vj) 6= 0 when vi and vj from the same feature.

(2) vi and vj belong to different features: do(vi, vj) = 0

if and only if ∀vh ∈ V, ψ(f i, fh)p(vh)p(vi)
= ψ(f j , fh)p(vh)p(vj)

.
When ψ(f i, fh) 6= ψ(f j , fh) and p(vi) 6= p(vj) (suppose
p(vi) < p(vj)), then p(vi, vj) < p(vj). Let vh = vi,
then φc(vi, vh) = 1 and φc(vj , vh) > 0. Accordingly,
dc(vi, vj) 6= 0 when p(vi) 6= p(vj). When ψ(f i, fh) =
ψ(f j , fh) and p(vi) = p(vj), ∃vh in feature f i and
p(vj , vh) > 0, but p(vi, vh) = 0, then φc(vj , vh) 6=
φc(vi, vh). Therefore, dc(vi, vj) 6= 0 when vi and vj belong
to different features.

5 Experiments and Evaluation
5.1 Baseline Methods and Parameter Settings
To test the embedding performance, CDE is compared with
three popular unsupervised categorical data embedding meth-
ods: 0-1 embedding (noted as 0-1), 0-1 embedding with PCA
(0-1P), and inverse document frequency embedding (IDF).
0-1 embedding keeps the most complete information in the
original data. 0-1 embedding with PCA incorporates feature
correlations into the embedding. The IDF embedding differ-
entiates values w.r.t. frequency.

To the best of our knowledge, no existing embedding meth-
ods capture the value couplings in categorical data as in CDE.



To test the CDE-based learning performance, we transform
CDE to similarity measure and compare it with three typical
and well-performed similarity measures which involve fea-
ture relation: COS [Wang et al., 2015], DILCA [Ienco et al.,
2012] and ALGO [Ahmad and Dey, 2007]1.

In Table 2, |C| is the number of ground-truth classes in
data, which is used for the clustering evaluation. We set pa-
rameter α = 10 in CDE and parameter β = 10−10 in PCA
used by CDE and 0-1P. In COS, DILCA and ALGO, we use
the default parameters in their original papers.

5.2 Performance Evaluation Methods
K-means clustering is used to test the performance of CDE
against other embedding methods. The embedding meth-
ods transform categorical data into numerical data, hence k-
means clustering can efficiently cluster objects without com-
puting the pairwise object similarity matrix.

To make a fair comparison with similarity-based represen-
tation methods, we perform the Gaussian similarity measure
on CDE to obtain a object similarity matrix. Spectral cluster-
ing is used to evaluate the performance of this object similar-
ity matrix against other object similarity matrices obtained by
COS, DILCA and ALGO.

F-score and NMI [Powers, 2011] are two of the most pop-
ular clustering evaluation methods. Since we fix the cluster
number to the number of classes in each data set, NMI per-
forms similarly as F-score. Here we only report the results
of F-score. Higher F-score indicates better clustering accu-
racy driven by a better embedding method or similarity mea-
sure. The p-value results are based on the paired two-tailed
t-test using the null hypothesis that the clustering results of
CDE and other methods come from distributions with equal
means. For each data set, the F-score is the average over 50
validations of clustering with distinct starting points due to
the instability of k-means clustering.

5.3 Data Sets and Data Factors
We use ten real-world UCI data sets from different domains
for the experiments. Various data factors are used to measure
the underlying characteristics of data sets, which are associ-
ated with the learning performance of embedding methods.
Two key data factors are defined below, and their results of
the data sets are reported in Table 1 and Table 2.

• The feature correlation index (FCI) measures the aver-
age correlation strength between features:

FCI =
2

m(m− 1)

m−1∑
i=1

m∑
j=i

SU(fi, fj). (7)

SU measures the correlation between features fi and fj
by the symmetric uncertainty [Yu and Liu, 2003]. Larger
FCI indicates stronger correlation between features.

• The value cluster index (V CI) is the average of the
maximum non-overlapping ratio between value sets con-

1Our experiments show DM [Jia et al., 2016] underperforms
DILCA and ALGO, so its results are thus omitted due to space limit.

Table 1: F-score Results of CDE vs. Three Embedding Methods on
10 Data Sets in k-means Clustering. Note: The best performance for
each data set is boldfaced.

Basic data info. & Data Factor F-score
Data |O| |V | FCI CDE 0-1 0-1P IDF
Wisconsin 683 89 0.212 0.967 0.946 0.946 0.943
Soybeansmall 47 58 0.180 0.915 0.829 0.854 0.763
Mushroom 5644 97 0.148 0.731 0.709 0.694 0.506
Mammographic 830 20 0.116 0.809 0.793 0.815 0.517
Zoo 101 30 0.110 0.647 0.596 0.607 0.537
Dermatology 366 129 0.089 0.670 0.598 0.606 0.616
Hepatitis 155 36 0.085 0.680 0.681 0.667 0.535
Adult 30162 98 0.060 0.654 0.585 0.588 0.479
Lymphography 148 59 0.057 0.418 0.381 0.379 0.561
Primarytumor 339 42 0.020 0.240 0.230 0.238 0.190
Average 0.673 0.635 0.640 0.565

p-value 0.003 0.003 0.020

tained in different classes for each feature:

V CI =
1

m

m∑
h=1

maxi,j{1−
|VhCi

⋂
VhCj
|

|VhCi

⋃
VhCj
|
}, (8)

where VhCi
is the value set in class Ci for feature fh and

m is the number of features. Larger VCI indicates the
higher discriminative ability of the value sets.

5.4 Results and Observations
CDE is first compared with three embedding methods, fol-
lowed by a comparison with three similarity measures. We
then examine the parameter sensitivity of CDE. 2

Comparison with Embedding Methods
F-score of CDE compared with 0-1, 0-1P and IDF are shown
in Table 1. CDE obtains the best F-score on seven data sets;
and on average, it demonstrates an approximate 9%, 5% and
19% improvement over 0-1, 0-1P and IDF, respectively. The
significance test results show that CDE significantly outper-
forms other embedding methods at the 95% confidence level.

According to the data factor FCI , the F-score performance
of CDE, 0-1 and 0-1P has a downward trend with the decrease
of FCI . Since CDE and 0-1P are able to capture the corre-
lation between features according to the data factor FCI , for
most data sets with higher FCI , e.g., Wisconsin, Soybeans-
mall, Mammographic, Zoo, Dermatology, CDE outperforms
the other embedding methods and 0-1P obtains better perfor-
mance than 0-1. On the other hand, FCI only reflects the
pairwise correlation between features, while CDE captures
the couplings beyond such feature correlation. So CDE also
performs well on data sets with lower FCI , e.g., Adult, Pri-
marytumor. IDF obtains better results on the data sets with
weak couplings, especially when the clustering division is
consistent with feature-value frequency, e.g., Lymphography.

Comparison with Similarity Measures
The CDE-based Gaussian similarity (denoted by CDE-G) is
compared with three well-performing similarity measures:

2CDE runs one order of magnitude slower than other embedding
methods and much faster than other similarity measures. Due to
space limitations, we do not show the detailed efficiency results here.



Table 2: F-score Results of CDE-G vs. Three Coupled Similar-
ity Measures on 10 Data Sets in Spectral Clustering. Note: COS,
DILCA and ALGO run out of memory on Adult. The average val-
ues are computed according to first nine data sets.

Clustering Info & Data Factor F-score
Data |C| V CI CDE-G COS DILCA ALGO
Primarytumor 21 0.873 0.242 0.196 0.224 0.209
Zoo 7 0.733 0.644 0.538 0.583 0.547
Soybeansmall 4 0.712 1.000 0.893 0.910 0.911
Lymphography 4 0.699 0.397 0.395 0.353 0.366
Dermatology 6 0.664 0.784 0.730 0.808 0.710
Mushroom 2 0.310 0.828 0.825 0.826 0.826
Wisconsin 2 0.237 0.962 0.973 0.921 0.971
Hepatitis 2 0.141 0.667 0.463 0.679 0.662
Mammographic 2 0.071 0.817 0.828 0.826 0.818
Adult 2 0.032 0.676 NA NA NA
Average 0.762 0.706 0.738 0.726

p-value 0.050 0.100 0.032

COS, DILCA and ALGO. As shown in Table 2, CDE-G re-
mains the best performer on half of the data sets. CDE-G ob-
tains about 8%, 3% and 5% improvement over COS, DILCA
and ALGO respectively in terms of F-score. The significance
test results show that CDE-G significantly outperforms the
other similarity measures at 90% confidence level. Note that
COS, DILCA and ALGO on Adult run out of memory since
calculation of object similarity needs a large amount of mem-
ory. This shows that it is more efficient to represent categori-
cal data with an embedding matrix than a similarity matrix.

In Table 2, the data sets are sorted in the descending or-
der of V CI which reflects the discriminative ability of the
value clusters in object classes. The class number |C| is also
a factor to describe the complexity of data clustering, which
is consistent with V CI according to Table 2. Since CDE-G
makes use of the value clusters with different granularities,
on most data sets with larger V CI and larger |C|, CDE-G
achieves better performance than the other similarity mea-
sures. Since CDE-G, COS, DILCA and ALGO are able to
capture the pairwise correlation between features, all meth-
ods achieve good performance on data sets with higher FCI .

Sensitivity Test w.r.t. Parameters α and β
There are two parameters in CDE: α controls the dimension
of value embedding before PCA and β controls the dimen-
sion of value embedding after PCA. Since all results have a
similar trend, we demonstrate the results of four data sets:
Adult, Dermatology, Wisconsin, Primarytumor, which have
the largest |O|, |V |, FCI and V CI respectively.

Figure 2 shows the dimension of value embedding before
PCA and the clustering performance with different α. α di-
rectly influences the value of k in Algorithm 1. k determines
the granularity of value clusters which consist of the origi-
nal value embedding. Since we only drop the clusters with
only one value, the clustering performance is stable with pa-
rameter α, and we can choose the parameter value which is
associated with the low dimension of embedding. According
to Figure 2, the dimension is stable when α ≥ 10.

Figure 3 shows the dimension of the final value embedding
and the clustering performance w.r.t. β.

It shows that the performance of the clustering is stable
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Figure 2: Sensitivity Test of Parameter α on Four Data Sets.

-20 -15 -10 -5 -1

logarithm of β (α=10)

0

20

40

60

80

100

D
im

en
si

o
n

Adult

Dermatology

Wisconsin

Primarytumor

-20 -15 -10 -5 -1

logarithm of β (α=10)

0.2

0.4

0.6

0.8

1

F
-s

co
re

Adult

Dermatology

Wisconsin

Primarytumor

Figure 3: Sensitivity Test of Parameter β on Four Data Sets.

with β. When β ≥ 10−15, the dimension of value embedding
vectors decreases with the increase of β on all data sets.

According to Figures 2 and 3, the clustering performance
is not sensitive to parameters α and β. These two parame-
ters can influence the dimension of value embedding. The
dimension is stable when α ≥ 10 and β ≥ 10−15.

6 Conclusions

Different from existing encoding-based embedding and fea-
ture correlation-based similarity measures, a novel unsuper-
vised representation framework (CURE) and its instantiation
(CDE) are introduced in this paper, which model hierarchi-
cal value couplings in terms of feature interactions and value
clustering. Extensive experiments show that CDE signifi-
cantly outperforms typical embedding methods and similarity
measures in capturing feature value interactions. In addition,
two proposed data factors further indicate the feature value
couplings and value clusters in data sets. Our future work is
to model selective value couplings and instantiate the frame-
work into other instances to suit different applications.
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